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ABSTRACT

The problem of allocaticn of ASW forces assigned to an
oceanic convoy in a submarine warfare environment is postu-
lated as a two-person game with the payoff function being
based on the "formula of random search”. The opponents in
the game are a convoy system and a submarine system. A
submarine is given the option of attacking the convoy system
either from afar with surface-launched missiles or near with
tdrﬁedoes. The convoy system is defended by units capable
of destroying submarines exercising either of their options.
The optimal allocation of forces for both sides is shown to
be a set of pure strategies which are dependent cn the

parameters of the model.
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I. INTRODUCTION._
GENERAL. The oceanic crossing of a convoy system n a sub-
marine warfare environment is a problem of major concern to
the U. S. Navy. As in all warfare the lines of communication
must be maintained open to insure the sﬁpport of the front
linesrof defense. In present day warfare a primary means of
accomplishing this goal is by large oceanic convoys. An
enemy would desire to make this task impossible or at least
severely limit its success. In a non-nuclear conflict an
_enemy would probably send submarines against the convoy,
sihce they‘a:e less susceptible t5 detection and attack than
either aircraft or surface ships. The convoy would have to
~pr6tect itself with anti-submarine warfare vehicles if it
expects to succeed in its mission.

Since the results of a given convoy crossing will depend
on the course of action taken by each force, modeling the
defense of a convoy as a two-person game is intuitively
appealing. In previous studies the convoy problem has been
analytically treated by various deterministic or probabilis-
tic mathematical techniques by Beice [l1], Cooper [2], and
others. However, these épproaches were founded on the as-
sumption that the opposition has some well defined tactic.
The game theoretic approach does not require this assumption
but more realisticélly considers that the submarine system
also has an alloucation problem. |

DEFINITION OF THE PROBLEM. Throughcut this paper we will

refer to the convoy system and the submar.ne system which

oppose each other as Blue and Red forces respectively. The

5



convoy}system is assumed tc consist of Blue logistic units
and attacking units. The role of the Blue logistic units is
to trénsport men and equipment that are necesrary for con-
ductidg a fcreign campaign acfoss an ocean. The Blue attack-
ing units are to défend the logistic units. The submarines’
primary role is the destruction of the convoy logistic units
beforé they reach their destination.

dnce contact with a corvoy has been made, there are two
methods of attack open to the Red forces. The most accurate
meénsgof delivery of a weapon is for a submarine to penetrate
the convoy's screen and make a close-in torpedo attack. By
s#anding off outside torpedo range a gubmarine may be able
té usé éurface-launched missiles which are more destructive
wéapohsjthan torpedoes. In our analysis a submarine will be
ailowéd;the option of attacking the convoy system either
ffomnéfar with surfaced—launched missiles or near with
térpeaoés.

‘ éince a submarine cannot attack until he is at least
within missile range we will assume that all Red forces will
be located somewhere within missile range of the convoy's
path.

During both torpedo and missile attacks, a submarine's
susceptibility to detection is increased considerably over
normal cruising conditions. A missile attack requires that
a submarine surface before launching the missile. For a sub-
marine to realize an optimum attack position and torpedo fire-

control solution, during a torpedo attack, he must operate

Reproduced From
6 Best Available Copy



~at various speeds on various courses and occasionally broach
;his periscope.

Because Red may be detected before he can attack, it
‘geems feasonable to assume that the Blue ASW forces will have
fan opportunity of attacking the Red submarine before the con-
voy absorbs the Red attack.

Ag the cnnvov nroceeds on its oceanic crossing two sep-
arate areas of the total ocean will be of primary concern to
éboth sides. The first, called the area of interest, is the
;iarea sarrounding the path of the convoy in which any sub-
?marine pfesent can conduct a torpedo attack as the convoy
épasses. Thus the area of interest is a function of Red’'s
geffective torpedo attacking radius. The second area, called
ithe area of concern, consists of the total oceanic area
%adjacent to the area of interest from which a submarine can
,attack with a surface-launched missile. Thus the area of
§concern is a function of Red's effective missile radius. It ‘
is assumed that Blue has knowledge of, or is capable of esti- F
mating the size of these areas. g

Since the enemy submarines can be expected to have a |
reasonable knowledge of the originating and terminal points
of the convoy, they will be able to estimate the route uti-
lized by the convoy. Thus it .s seen that both sides can be
expected to know-both the size and the location of both areas
throughout the convoy crossing.

Within this setting, the commanders of both forces}are

faced with the problem of how "best" to allocate their re-

spective attacking units between the areas ot interest and
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concern. In this paper we will concentrate our attention,

during formulation, to the Blue commander's problem. It will

be evident, however, that we will resolve both commanders'
problems as a consequence of the game theoretic approach to

the solution of the Blue commander's probllem.
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II. FORMULATION OF THE MODEL

PAYOFF FUNCTION. Since both sides are confronted with an

allocation problem between the same two areas of the ocean,
the nieasure of the payoff should be a function of those forces
of both sides that are deployed inr each area. Because each
player is trying to destroy his opponent's ships a logical
measure of the outcome of each player's actions is the ex-
pected losses incurred by both sides in each of the two areas.
Each player would use the payoff function to guide his

decision making. The logical reaction cf each player would
be to try to maximize his opponent's losses while minimizing
his own. However, it is important to realize that the nature
of the ASW problem precludes the equivalence between maxi-
mizing an opponent's losses with minimizing one's own losses.
Fdr example, the minimizing of Blue losses is nct eguivalent
to maximizing Red losses because a Blue attacking unit need
not kill, but only prevent the submarine from attacking, to
minimize Blue losses. However, to maximize Red losses, Blue
must kill the Red units. \

| By minimizing the convoy system's losses the Blue com-
mander realizes an immediate benefit because the final value
of the logistic units completing the convoy crossing is maxi-
mized. By maximizing Red losses the Blue force also receives
a long-run return because the Red units destroyed represent
no threat to future convoys. Similarly, 1f the Red commander
is seeking to maximize Blue convoy losses he 1s fulfilling

his mission. At the same time, 1f he is minimizing his own
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losses then he, too, is receiving both a long-and short-run

if return.

f | The payoff for the Blue commander's problem will be
taken as the difference between Blue's expected losses and a
weighted function of Red's expected losses. Blue selects the
weighting factor in a manner such that the latter losses are

commensurable to the former from his viewpnint, The Blue

commander's objective will be to minimize this linear com=~
bination. ‘
Thus the payeff function, D, being the difference between
Blue's eipected losses and weighted Red's expected losses,
may be expressed asg:
D=DB ~U (DR) , (1)
where DB = the total expected number of Blue logistic losses
; (Blue sghips);
DR = the total expected number of Red submarine losses ?
(Red ships): : 5
U = the weighting factor equating a unit Red loss to
a unit Blue loss (Blue sghips/Red ships). |
In practice there is a difference in worth of a submarine as
compared to a logistic vessel. For this reason a weighting
factor or utility index, U, is used for each Red submarine
loss which equates the value ¢f one Blue logistic logs to one
Red submarine loss.
The structure of the payoff function, D, implies that a
positive value of D corresponds to a gain by Red; a negative

value of D corraesponds to a gain for Blue.

10




EXPECTED BLUE LOSSES. 1In the develcpment of an expression

fuLr Lie caxpected Blue logses we will assume that the Red
forces consist of submarines which have identical capabilitiss
and effectiveness. In addition, each Red submarine is assumed
to be able to render either torpedo or surface-launches mis-
sile attacks, but not both concurrently. Finally, since a
large convoy provides a "noisy" target, the probability of
detection of the convoy by a Red unit can be considered to

be unity.

To prevent multiple detection of Red by Blue, and at the
same time to ensure a reasonable degree of survival, the sub-
marines are assumed to act independently of one another and
to be deployed uniformly over each of the areas.

We assume that each submarine has a limited supply of
torpedoes and missiles; consequently, to conserve his weapons
for the logistic units he does not expend his weapons on the
ASW vehicles. It is obvious that Red has no choice in the
case of ASW aircraft, but he may have a choice if Blue is
using ships as the ASW vehicles.

The Blue attacking units are assumed also to act inde-
pandently of each other. Further, we will assume that all
units will be assigned equal areas in which to conduct a
random search for Red submarines.

The independent, random search by both Red and Blue,
combined with the limitations of Blue's detection equipment
characteristics, sea and weather conditions, and operator

performance allows the use of th2 "formula of random search"
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for determining the probability of detection of a Red unit
by a Blue unit. [21.
The total expected number of Blue losses, DB, may there-
fore be expressed as:
DB = ml"‘j.C:t + (M~ m)PcCc= (2)
where M = the total number of Red submarines;
m = the number of Red submarinss in the area of interest;
M - m = the nunber of Red submarines in the area of
concern;
P, = the probability of a Red submarine in the area of
interest, A;,survives an attack by a Blue unit;
P, = the probability a Red submarine in the area of
concern, A, survives an attack by a Blue unit;
Cy = the expected number of Blue logistic units de-
~stroyed (i.e., effectiveness constant) by a Red '
v submarine deployed in the area of interest;
C, = the expected number of Blue logistic units de-.
stroyed by a Red gubmarine deployed in the area
of concern. » |
The terms Cy and Cc represent effectiveness constants and are
functions of the performance of a submarine. They are depend-
ent on the number of Blue logistic units a Red submarine is
able to take under attack, the accuracy of its attacks, and

the effectiveness of its weapons.

EXPECTED RED LOSSES. Based on the assumptions associated with
equation (2), we can express the total number of expectad Red
losses, DR, as:

DR = mPSi + (M - m)PSc (3)

12




where PS, = the probability a Red submarine in A, isg destroved
by a Blue attacking unit, and
PS, = the probability a Red submarine in A, is destroyed
by a Blue attacking unit.
Since P, is the probability a Red unit survives,
P§; = l -~ P,. Similarly, PS, = 1 - Pg-
DETERMINATION OF PROBABILITIES. To determine the probabil-

itieg‘of kill it is necessary to define another area. The
Bluetéttacking units are deployed in an area which is called
the area of search, AS. The area of search has the convoy as
its center at all times and is made up of two parts. The
first is an area denoted Asi which is partially congruent

with the area of interest. The second, AS_, is partially

c

congruent with the area of concern.

The formation or composition of the logistic convoy may
be thought of geometrically as a square, and the total area
ofAsearch, AS = Asi + Asc' may then be considered to be a
square with dimensions J by J, where J/2 is the maximum range
of the Red migsiles. For symmetry, the area Asc ha; dimen-
sions Lc by J and the area Asi has dimensions Li by J. Thus
J =L, + L, whare Li and L, are measured perpendicular to the
convoy's track (see figure l).

It should be noted that as the convoy transits, ASi will
sweep out the area of interest, Ai, and AS will sweep out
the area of concern, A,

The time, T, for the convoy to travel the distance J at

a speed of S is given by
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LT3




T
2

--- - e

!

Ag Lo AS Ao

F"_{
A, L: As, Y Ay

© Pigure 1

Becausa all attacking uniﬁs are assigned equal areas for

4individual noﬁ:gh,

v As oo ..-.'>‘v
s ~i .
| | Ay =%~
~ - Co ) L :
where AS; = the area assigned to each Blue attacking unit in
Asis | -
n = the number of Blue attacking units in Asi‘

similarly in the araa of concern:

ASg = § ==

where igc = the area assigned to each Blue attackinq unit in
Asii
N = the total number of Blue attacking units available:
N - n = the number of Blue attacking units in As .
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The probability, PS, that a Red submarine i1s killed in
ahy area, given it is present, is expressed by
PS = PWPlPd '

the probability a weapon launched by Blue is

fl

wpere P,
effective, given a weapon is launched;

P, = the probability that a Blue attacking unit gets

1
into an attack position and launches a weapon,
given that a Red submarine is detected by a
Blue attacking unit;
P; = the probability a Red submarine is detected by

a Blue attacking unit, given the submarine is
in the area bheing searched.
Using the "formula for random search" as the probability
of detection, Pd' the probability a Red submarine is killed

in the appropriate area is:

PS = PwPl(l-exp—zgg] (4)
iwh’ére w = the relative speed of the Blue attacking unit and
Red submarine;
W = the effective sweep width of the Blue attacking

| unit in either A, or Ac.‘
Béth w and W are assumed to be constant over the duration of
the convoy's oceanic crossing.
Upon substitution for T and AS in equation (4), the

probab.ility a Red submarine in the area of interest is killed,

PS., is
2 r wH,Jn <
PS_ = (Pw)ltpl)iLl—exp—s—ﬁS—:Y l . (5)
15 Reproduced From
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Since w, Wi' J, 8, and Asi are constant parameters of

wW.J
h)
+ha mada - LI = ~ . L
the mod2i, wWe set Ky §TK§IT , where kl represents Blue's

detection constant in the area of interest. In a like

manner, since (Pw) and (Pl) are constant parameters we set
i i

Ki - (Pw’i(Pl)i, where Ki'is a measure of Blue's attacking

performance in the area of interest.

Similarly, we will denote k, as Blue's detection con-
stant in the area of concern and K, as a measure of Blue's
attacking performance in the area of concexn,

Equations (4) and (5) can now be rewritten as

“Psi = Ki[l-egp-kin] ; ' ' (6)

PS, = K,[l-exp-k,(N-n)] . (7)

- EXPLICIT FORM OF THE PAYOFF FUNCTION. Substitution of equa-

tions (6) and (7) in equations (2) and (3) gives the explicit
forms of the expected Blus and Red losses. These forms, upon
substitution into equation (1), result in the following ex-
pression for the Blue commander's payoff function:

D(m,n)-mci[}éxi(l—éxp-kin)] + (M-m)Cc(l-Kcll-exp-kc(N-n)l)

- U(mK, (1-exp-k;n) + (M-m)K,[l-exp-k_(N-n)]}. (8)

16
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IlI. CRITERION OF THE MODEL
In analyzing this military conflict situation as a game

of strategy, a player's skill and intelligence should be used

+
6
£h

gteimine the payoft. The formulation of the model was
intended to structure Blue's allocation problem as a two-

person, finite, zero-sum, non-cooperative game,

It is two-persoh since there are only two opponents,

Blue and Red. Since each player's resources are discrete

-units and have an uppex limit, both have a finite number of

possible alternative allcocations. The game is therefore fi-~
nite. The game is non-cocperative because neither side com~
municates with the other.

‘Cmﬁ&nﬁmofﬂmwaumumnwmeMthur
sum sense means that whatever Blue does not win (i.e., Blue
losses and Red survivals) will be considered to be a gain for
Red and Red's gain is measured by Blue on the same scaie as
ha-meﬁsures his own payoff., It follows then that the sum of
Blue's and Red's payoff determined in this manner will be
zero.

“ A fiﬁite two-person, zero-sum game in which both oppo-
nénts play simultaneously without information about the
other's action is called a rectanqular or matrix game. For
such games, a payoff matrix or array of the payoffs to either
player resulting from all combinations ¢f the players' strat-
egies can be constructed. If M and N are the total number of
available Red and Blue attacking units, respectively, then a
payoff matrix, D, can be constructed such that the number of

the rows and the number of the columns is equal to the number

17
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of possible units that Red and Blue could respectively deploy
into the area of interest. This completely describes all
possible outcomes since units not allocated in the area of
interest are allocated to the area of concern. An element
6f‘D, denoted dii’ represents the expected outcome for a
crossing in which Red uses i attacking units and Blug uses j
units in the area of interest. Thus D is a M by N matrix
with elements dij such that 1i =1,2,...,M and §j =1,2,...,N.

In solving for his optimal strategy in a matrix game,
Blue will apply the minimax criteriorn. Under this criterion
élue makes use of the following three presupgositions.
| First, Blue feels that Red's motives are diametrically
6pposed to his own. Blue is trying to get the convoy across
the ocean and Red is trzying to prevent this deed.

Sécond, Blue realizes Red could very closely approximate
3lue‘s payoff matrix and determine Blue's optimal strategy.
: Third, Blue feels that if Red knew Blue's allocation
then Red would allocate his forces to reduce Blue's payoff
as much as possible. These three presuppositions indicate
that Blue considers Red a rational and intelligent opponent.

With these factors as his decision basis, Blue begins
his selection of his optimal strategy for a.li:zcation of forces
between the areas of interest and concern by investigating
the worst that could happen (i.e., the largest value of D}
for each of his p@asiblé alternatives. He then takes the

alternative corvesponding to the minimum of these as his

optimal strategy. This is the well known minimax strategy
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of game theory. Ailthough it is pessimistic in nature, the

use of this criterion provides an upper bound on the worst

r

that oould happen Lo Blue.

For any finite two-person, zero-sum game each player's
optimal strategy is either a pure strategy or a mixed strat-
egy. A pure strategy for Blue in our problem implies that
Blue always uses the same allocation between the areas for
the same given set of parameters of the model. A mixed strat-
egy undex-these same conditions implies choosing an allocation
prior to each crossing in accordance with some particular
probability distribution. We will show that only strategies
which are pure strategies will be 6ptimal for this allocation

problem.

19
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IV. BLUE'S OPTIMAL STRATEGY
DEVELOPMENT. 1In the determination of Blue's optimal strategy
we will initially ignore the integer requirement on the nurmber
of Blue and Red forces allocated to any area.
If Blue plays some strateqgy n then the worst that can
happen to him is that D{m,n) will take on a value of

max D{m,n). Therefore, und2r the minimax criterion Blue
0<m<M

selects n yielding min max D{(m,n) = v;- In a like manner,
0<n<N 0<m<M

Red:-would select m in order to max min D{(m,n) = Vo
: Ofmiﬁ 0<n<N

The payoff function is now examined in the light of the
following saddle point theorem [6]:

Theorem: "Let £ be a real-valued function such
that f£(x,y) is defined whenever x€a and y€B

(A and B are sets); then a point, (Xe’yo)’ such
that xOGA and yOGB is called a saddie point of
f if the following conditions are satisfied:

(i) f(x,yo) < f(xo,yo) for all xea

(ii) f(xo,yo) < f(xo,y) for all y€B.

Then a necessary and sufficient condition that

max min f£(x,y) = min max f(x,y) = £ixg,v,)
XEA y€EB yEB X€A

is that f possesses a saddle point.”

Therefore, for our problem, if vy and Vo exist and are
equal then the optimal solution to the game is the set of pure
strategies {mo,no). To prove that they exist and are equal it
must b2 shown that a saddle point exists at ima,nﬁ} such that
the Ifollowing relation holds:

R
s

D(m,no) < D(mo,nﬂ} < D{ma,
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Inspection of egnation (8) shows that D is continuous in
both m and n for -» < m < » and -» < n < =. Cloger inspec-
ticn shows that D is convex in n for any given m and linear
in m for any given n. These properties suggest that a saddle
point (mo,no) may be obtained by taking the partial deriv~
atives of D with respsct to both m and n, setting both par-
tials equal to zero, and golving for the values of m and n
which satisfy the resulting systam of equations.

The partial derivatives zre

3D ~kin ~k(N-n)
FE = ci-xi(ci"'U) (l"‘ ) - cc + Kc(Cc"'U) (1"‘ ’

P -kin -kO(N-n)

When these derivatives are set egual to xzero, we get

-kj.n -'ka(N-n)
C; = K (C;+U) (1@ ¥ ) = Cy = K (C 4U) (1-a ,
-k, (N-n) '
) o
chaicci-ﬂ)a B
0= M -kiﬂ . —Rc(ﬂ-ﬁy . (10)

BEquations (9) and (10) form a system of two equations
with two unknowns. Eince (9) is a function of n only, it can
ke solved for the value of n,. This value of ng, can then be
substituted in (10) to determine my.

Since D is strictly convex in n for any givean m, it
follows that D(m,,n,) < D(my,n) for all -» < n < w. Further,
since D is linear in m for any given n, it follows that

D(m,ny) = D(my,n,) for all -= ¢ m < = because n, was salected

21
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to give %% = 0. Thus (mo,no) obtained from equations (9)
and (10) iz a saddle point.

We will designate m* and n* as the optimal strategiss
for Red and Blue; as such they must satisfy the requirements
©f 0 ¢m* < Mand 0 <n* <N. Ifm, and n, fall within the
feasibility region of m* and n* then it follows from the
saddle point theorem that my = m* and By = n*. We will refer
to any pair ot optimal strategies corresponding to this sit-
uation as an Internal-Saddle-Point (ISP) solution.

A special property of ISP solutions is that 0 < m* < M.
This property is a consequence of equafion (10). We can re-

write (10) to get the following form for m, as a function of

n.: -k, 0
0 Kk (C +U)e * 0 -1

-kc(N-nET ‘
Kmkc(C°+U)e _

The term in brackets of this expression is}positive and
greater than vnity for -« < ny < =; therefore 0 < m, < M,
It follows that 0 < m* < M whenever 0 < n, . N.
A further consequence of the special property is that
the following cases wil. never ocgur:
(my, ngy) = (M,0) ,
(mg, ny) = (0,N) .
It is clear that the saddle-point golution will not
necessarily provide integer values for m* and n* due to our
relaxing of the integer requirement. To obtain the "best'

integer solution we will evaluate the payoff function for

the four integer solutions closest to m* and n* and choose

22
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that integer solution having its D value closest to D(m*, n*).
We will refer to this integer solution as the pseudo-saddle-
point. We recognize the theoretical difficulties in round-
ing off non-integer solutions to obtain integer values, but
we feel that the approach is reasonable for a practical prob-
lem, particularly one whose parameters are somewhat inexact.
This will be discussed in more detail later in the paper.

Suppose now that n, lies outside the interval [O0,N].
What will the optimal strategies be? In answering this ques-
tion we will consider two cases; the first (Case I) corres-
pbnds ton, <0 and the second (Case II) to n, > N.

To facilitate the study of these cases, the expressions

for Dwhenm = 0 and m = M are useful. They are

D(0,n)

—kc(N-n)
M[?C-KC(CC+U)(l—e )i (11)

D{M,n)

i

—kin ]
M Ci-Ki(Ci+U)(l—e Y. (12)

Inspection of egquation (8) shows that D{m,n) can be written
as the following convex combination of D(0,n) and D(M,n):

where » = =. Obviously 0 < A <1 if m is required to lie in

=8

the region 0 < m < M., Figure 2 is a sketch of equations (11)
and (l12) as a function of n. This figure shows an ISP solu-
tion {i.e., m* = mg and n* = no). The value of n where the
curves for D(0,n) and D{(M,n) intersect is ng, because the
bracketed terms of (1l) and (l12) are, in fact, the right and

left sides respectively of equation (9).
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Figure 2

From figure 2 it is e&sy to see that Case I (no < 0)
will occur when D(0,n) > D(M,N) fer 0 < n < N, The optimal
strategies in this case must then be n* = 0 and m* = 0 since
D(m,0) < D(0,0) < D(0,n) for any 0 <n < N and any 0 <m < M.

Case II (n, > N) will cocur when D(0,n) < D(M,n) for
0'5 n £ N. The optimal atrategy in this case is thenm* = M
and n* = N since D(m,N) < D(M,N) < D(M,n) for any 0 < n < N
and any 0 <m < M.

From these cobservations and the derivation of equation
(9) it follows that Case I will occur when

v )
m . <9

n=Q

and Case II will occur when

D
m

> 0.
n=N
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In addition, it is worthwhile to observe that

~ o
qu

m<0whenn<n°:

3D .
T > 0 vhen n > nge

Further, %2 is a strictly monotonic decreasing function of n;
that is,
3D

aD
< when n, < n,.
om nen, am n=n, 1l ) N

These results suggest a procedure for determining the optimal
strategy cases (Case I, Case II, or ISP) on the basis of the -
values of the parameters of a particular problem. The devel-
opnent of this procedure is based on the following lemmas and
theorems. '

Lemma l: The necessary and sufficient condition for Case

I (no < O)t.o occur is -g—g- =0 < 0.

Proof: Assgume n, < 0. Since n, is Jdefined as the value

of n giving -g% = 0 and %1?—‘ is a strictly monotéﬁip decreasing

function of n, it follows that %3- <0 for n = 0,

Next, assume %—3- < 0. From the definition of n, we
n=0
know 22 aD .,
ow xo = 0. From the monotonicity of it then follows

n-no

that no < 0.

The expression for %—% when n = 0 is

-ch’
= C; - Cy+ xc(cc+u)(1-e ),

515

n=(
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and %2 < 0 is equivalent to
m
n=0
-k ¥
i’¢c A2
Ce > -k N =S (13)

c
l—Kc(l—e )

Therefore, as a consequence of Lemma 1, we can state the

following theorem.

Theorem l: The optimal strategies are (m*, n*) = (C,0)
i.‘f.' .1*' nly if L2 Cc,

% We can make similar statements about Case II (nO > N).

f Lemma 2: The necessary and sufficient condition for

Casé II (n., > N) to occur is 32 > 0.
; G am n=N

§ The proof is similar to that of Lemma 1. In this case;
= > 0 is equivalent to
n=N

-k.N o~
i ) 4 e

Cc < Ci - Ki(Ci+U)(l-e . (1)

And, as a consequence of Lemma 2, we can state the following
theorem.
é Theorem 2: The optimal strategies are {(m*,n*) = (M,N)

if gnd only if CC < C.

Finally, as a consequence of theorems 1 and 2 and the
definitions of m, and n,, we have the following corollary.

Corollary: The optimal strategies are ({(m%*,n*) = (mD,nO)

~
~

if and only if C, < C, < C_.

From the theorems «ncd the corollary we realize that the
necessary and sufficient conditions for each case can be de-

termine d by an investigation of the relationship of C_ to

-~
A
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éc and éc. To solve a given problem for the optimal strat-
egies, we would first calculate the values of ec and éc and
compare the value of C. with these calculated values. If
either Case I or il results then the optimal strategies are
easily specified. If the ISP Case arises then the optimal
strategies must be determined using equations (9) and (10).
The following numerical example illustrates this procedure.
EXAMPLE. Suppose the following parameters are given:

Cc = Ci = 1.0=0U = Kc' Ki = ki = 0.5, kc = 0.0405, and

M =N = 10.

From egquations (13 and (1l4) we get éc = 2,0 and Gc = 0,67,
Because Cc = 1.0 we have Cc < Cc < éc and, from the corollary,
an ISP solution is optimﬁl. Using equations (9) and (10) we
calculate the saddle-point solutions to be m; = 3.54 and
n, = 1,78, Since both m, and n, are well within their re-
spactive feasible ranges, the optimal non-integer strategiaes
are m* = 3.54, n* = 1.78 and D(3.54, 1.78) = 4.37. However,
only integer values of m and n are permissible, thus the pay-
off function, D(m,n), nmust be evaluated for the four integer
solutions closest to m* and n* to determine the pseudo-
saddle-point solution. These four values are: D(3,1) = 4.50,
D(3,2) = 4.22, D(4.1) = 4.76, D(4,2) = 4,16. Since we should
choose that integer solution closest to the non-integer
saddle-point solution, we pick D equal to 4.50. This pseudo-
saddle-point solution yields integer strategies of m = 3 and
na=1.

The relationship between m* and n* for ISP solutions to

problems in general is suggested by figure 3. This figure
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shows the various optimal strateqgy reaions and rancésoné walys

curves of m* and n* plotted on the C. - ki plane for values

of the other parameters of our sample problem. Although it

- may not be evident from this figure, it should be noted that

as ki increasaes the constant m lines asymptotically approach
the value of éc. The éc line corresponds also to the n = 0
curve and thus for very large values of k, all sollutions will
be Case I (m* = 0, n* = 0).

From figure 3 it may be seen that an increase of ki'

with all other parameters fixed regults in a decrease of n*

“and an initial decrease then increase of m¥, Thié seems rea-

sonable since as Blue's detection constant in the area of
ihtéfast‘incrédsea, it forces Red to maintain more of his
affort in the area of concern, where he is not agAvulnerabie
to deéection, and thus Blue is forced to direct his attention

to the area of conceérn. However, as Blue increases his effort

" in the area of concern Red will desire to shift more of his

units to the area of interest.

An increanﬁ of Cc, with all other parameters fixed, re-~
sults in a decrease of m* and n*. This implies the subma-
rines' effectiveness in the area of concern has increased and
as such Red would want to allocate more to this area. Sup-~
posedly Blue's estimate of C; would increase also and thus he
would allocate more ASW units to the area of concern. Hence
both m* and n* decrease since both sides are re-allocating
their units to the area of concern.

Associated with any particular set of m*, n* within the

ragion of ISP solutions will be either one or two different
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sets of C,, ki values. FEach case having only a single set

of Cc, ki values occurs where a constant m line is tangent

to a constant n > 0 line or where a constant m line intersects
with the n = 0 liine.

As we have shown, the optimal strategies can be calcu~
lated if the values of all the parameters are known. In re-
ality, these valuas ﬁill probably be the result of the Blue
commander's juuy .nt because it would be difficult, for ex-
ample, for him to know precisely the submarines' effectiveness
with surfaced-launched migsiles. The value of U, in partic-
ular, is completely subjective. COnsoquently, an awareness
of the intluancc- of the various paramatora is important.

-An undorstanding of thae paramatric 1n£1uances may be

. £aci11tatcd by consideraticn of the optimal strategy in the

Co -'ki piane ., Eigure 4 illustrates the shape of these

~ vegicns for parameter values of our example. A large amount

7 ot‘ingcfmatipn about the influences of the various parameters

can be obtained by a study af~th§ bshavior of éc and éc in

‘ thiq‘p#gne. For example, if U were to be increased from 1.0

to 2.0, then éc would increase and &, would decreass as in-
dicated by the dashed curves in figure 4. Thua, the ISP
solution area of the C, - ki plane increases. Conversely,
as U decreases this area decreases.

The changes in ec, éc, and D per unit change of any of
the paraneters of the model can also be obtained by taking
partial derivatives with respect to the particular parameter

or by direct calculation if the other paramaters are known.
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An analysis of the effects of changing the various param-
eters would indicate how best a planner might change his op-
timal strategy if the opportunity arises. In a sense it gives
a planner a limited option of regulating the outcome of the
payctf function if he has knowledge of and control of some of
the input parameters. For example, a planner may have the
ability to direct more affort or funds into one or more param-
eters which he is able to adjust. Through.an examination of
the model he could determine how best to change his control-
lable parameters in order to realize the most benefit. As

another example, a planner may be able to cbtain sufficiently

reasonable estimates of tha input parameters so that a

K} |




"ball-park" optimal solution can be determined. He could then
determine from a sensitivity analysis which parameters merit

further study to obtain more precise estimates.
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V. DISCUSSION OF THE MODEL
ASSUMPTIONS. We have greatly simplified the model by assuming
botn that the area of interest is like a “road” across the
ocean with tha ares cf concein laying on either side and that
the areas assigned to the ASW units to search coincide with
the areas of interest and concern. What has besn jgnored here
is, first, the kinematics of search thecry imposed by the
capabilities of the units of both gides, and sacond, the pos-
sibility that the convoy cculd be attacked with missiles from
the front and rear. This limits the application of the model
but not the use of a game thsorstic approach in the analysis.
We have assumed that both Blue and Red know the location
and size of the areas of intarest and concern. Red knows the
size of the areas aince both areas are a function of the
capabilities of Red's weapons. Blue knows the location of
the convoy route since he chooses it. Blue can usually ap-
proximate the effective range of Red's weapons and will use
these sstimates to avyign his ASW units. Thus, we can say
that Blus fairly waell knows the size of hoth the area of in-

torest and the area of cbncern. We have assumed that Red

knows the location of the' convoy route since this would prob=-

ably lead to the worst possible outcome of a crossing asx far
as Blue is concerned, and this asssumption is thus consistent
with the pessimistic attitude of a player using the minimax
criterion.

Use of the “formula for random search" for the probabil-

ity of a Blue unit detecting a Red unit that is present is

33

) e lifErr




valid when both Blue and Red are moving independently and
randomly. Even though the "formula" is by nature pessimistic,
its use is consistent with the minimax criterion. The as-
sumption of Blue attacking units moving independently and
randomly is jusc:ified wheh a Blue attacking unit is individ-
ually assigned an area to sesarch. This usually occurs when
they are either limited in number available, detached from
the immediate arca of the convoy to search in some large re-
mote area, or dispersed because of the threat of a nuclear
attack. The assumption may not be justified if the ASW mis-
sion is conducted under coordinated, systematic, multi- .
vehicle seaxrch plans. This type of search may occur when

the available number of both ships and aircraft are limited.
Such saarch plans negate both the assumption of each Blue unit
searching equal areas, and the assumption of homogenity of

the Blue attacking force,

The assumption of an independent, random, uniform deploy-
ment of Red submarines is guite reasonahle because uany mutual
interference that one submarine may have on another is
avoided.,

The assupptior that a Blue attacking unit alwayes has an
opportunity to detect and attack a Red unit before the Red
unit attacks is a matter of conjecture, In many regards this
assumption is rcasonable because the submarine must ugsually
commit scme act that will increase his likelihood of detection
(i.e., expose his periscope when making a torpedo attack or

surfacing while conducting 2 missile attack).
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Although the primary mission of the Red submarines is
the destruction of the convoy logistic units, it is quite
possible that they may attack the escort wvehicles. For ex-
ample, if an ASW aircraft carrier is involved with the convoy
most submarine commanding officers would prefer to sink the
carrier before they begin to sink the logistic units. The
destruction of a carrier obviously removes a major threat to
the Red forces.

Some of the parameters which we have assumed to be con-
stant in the model may in fact be quite variable. For ex-
émple, when we formulated the detection constant in an area,
we treated the relative speed between the Red and Blue units
to be a conctant given value determined exogenous to the.
model. The assumption of fixed relative speed between Blue
and Red units is reasonable when there is a large speed dif-
ferential between Red 'and Blue units such as when Blue uses
ASW aércraft units against Red submarines. The assumption,
hcwevér, is generally questionable. When ships are used as
Blue attacking units they will generally operate at low speeds
in order to enhance their sonar detection capabilities. The
behavior of these ships and the Red submarines, operating at
various speeds either to avoid detection or to establish an
accurate firing position, would result in a highly variable
relative speed. Also, if nuclear submarines are emplecyed by
Red, the relative speed is probably not constant regardless
of the type vehicle used by Blue since the speeds of the

nuclear submarines can vary over a wide range.
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In summary, although the validity of some of the assump-
tions may be debatable, the assumptions are realistic enough

to permit the model to be useful as a first approximation to

tha

-~
-ae -

udy of a convoy crossing in a submarine environment.

PAYOFF FUNCTION AND ALTERNATIVES. 1In this study the goal of

the Blue commander has been to minimize the payoff function,
D=DB - U (DR). It has been pointed out that this payoff
tunction implies that Blue receives both a short-run and a
long=-run return. It should be noted that if long-run returns
are considsred, then this implies that the Blue commander
would be willing to xisk an increase in logistic losses to
gailn a larger increase in submarine losses. The amount of
risk the Blue cormmander is willing to take is represented by
th¢ v;1ui of U. 1f the valua of U is small this implies he
is willing to take only a small risk in the increase of logis-
tié losses. Conversely if U is large he is willing to tako a

high xpisk.

If the Blue commander had other cbjectives then an alter-

 native payoff function might be appropriate. For instance, if

oircunstances prevail which dictate a one~-convoy-only situa-
tion thea the influsnce of the long~-run beneiits received by
sinking a subiarine would be ignored because the Blue command-
er's primary interest would be to prevent the submarines from
attacking the logistic units, The objective of the Blue com-
mander in this case would be to minimize only Blue losses.
This implies that Blue does not have to destroy the submariness
but only prevent them from attacking to assure the successful

crossing of the logistic units. A contingency such as this
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will exist when the value of the cargo of the logistic units
is of exceptionally high value (such as that of a country's
total amphibious assault force). It should be emphasized
that using this payoff function in a multiple convoy situation
could very well lead to suboptimization.

If the size of the enemy's entire submarine force and
other pertinent information, such as resupply rate, are known
then a Lanchester approach might prove very interesting [8].

In this case the payoff function would be a relationship
DB
DR*
forewarned cof the usual criticism of a ratio type of objec-

using the exchange ratio, The user, however, should be

tive function; it is easy to lose sight of the magnitude of

the losses.

USE OF GAME THEORY. According to game theory, instead of

using the pseudo-saddle-point solution when a non-integer ISP
occcurs, we should use a mixed strategy. From the nature of
the payoff function Blue's mixed strategy will assign positive
probability to some set of the min (M,N) alternatives. The
use of the pseudo-saddle-point solution, however, offers a
more realistic approach to this convoy allocation problem.
This can be seen for several reasons.

Since the Blue commander is faced with a single decision
that determines the allocation strateqgy for the complete cros-
sing, it seems reasonable that when the non—integei ISP case
occurs he would choose a strategy near the saddle-point.

Clearly, the pseudo-saddle-point solution is appealing

when there are a large number of units to allocate since the
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round-off procedure would imply only a small percentage
change from the non-integer outcome.

Further, the uncertainty of the Blue commander's esti-
mates of the values of the parameters of the model suggests
~a variation in the location of the true saddle-point. One
ﬁight be able, for example, to make some confidence state-
ments about a calculated value of the saddle-point based on
the distribution associated with some parameter. As such,
the round-off procedure will possibly keev the éllocation
strategy within the location of the true saddle-point. The
variability of the parameter estimates also allows the pseudo-
saddle-point to be used when a small number cf units is to be
allocated.

Because game theory has been used in this study to

analyze the convoy system allocation, it is necessary to
realiza that there are limitations or restrictions that are

inherent in a game theoretic approach to actual conflict
(4

situations. As Quade points out [9]:

"Game theory does not cover all the diverse
factors which enter into behavior in the face of
a conflict of interest. There are certain impor-
tant limitations. First, the theory assumes that
all the possible outcomes <an be specified and
that each participant is able to assign to each a
measure of preference, or utiliity, so that the one
with a larger numerical utility is preferred to
one with a smaller utility. Second, all the var-
dables which determine the payoff and the wvalues
cf the payoff can be specified; that is, a de-
tailed description of all possible actions is
required."

To what extent can we satisfy these limitations in our
problem? First, all possible cutcomes can be determined in

our problem if the upper bound on the number of forces on

38 Reproduced From
Best Available Copy



each side is known or can be estimated with a high degree of
confidence. The assumption that this parameter will be spec-
ified is very reasonable sgince a credible estimate of force
size is usually available. Second, the payocff matrix in the
convoy allocation problem is a function of losses and surviv-
als and, hence, is readily adaptable to some measure of pref-
erence. Finally, even though knowledge of all actual param-
eters or variables in a ébmplex problem is gquite impossible,
a reasonable estimate of the major or more significant param-
eters in such a problem is conceivakle.

Whether a game theoretic approach can be used for deter-
mining an actual strategy in war or only for planning purposes
appears to be dependent on the accurate description of all the
necessary parameters and the degree of confidence in the esti-
mate of their values. The convoy allocation model attempts
to include those parameters which represent all the major as-
pects of the situation. However, both a more detailed model
and a more precise investigation into the assumptions would
undoubtedly be required in the determination of actual wartime
strategies. Nonetheless, the model formulated in this study
appears useful for planning or policy analysis. A planner
can not only use the model to understand the general nature
of the problem but also to investigate the influence of
changes in parameter values. Both can be valuable when future
models of the convoy allocation problem are considered.

Because of the structure of the payoff matrix and the
nature of the paycff function required by the first and second
limitation respectively, the game theoretic apprecach provides
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a systematic analysis of both the alternative courses of
7action and the effects of changes in parameters.

Evén though the game is one in which Blue and Red are
assumed to be diametrically opposed, it is possible that they
will not have precisely opposite objectives. This may be
taken into account by permitting each player to assign a d4if-
ferent Value to the weighting factor, U, which compares the
value of a Blue logistic unit to a Red submarine. Thus, even
_tﬁough a matrix of outcomes in terms of absolute losses is
Vthe same for both sides, each player would generate his own
péyoff matrix and use it to determine his optimal aliocation
strategy. The zero-sum problem would occur only if both
players use the same value for U. The general'problem is un-
doubtedly a nonzero-sum game.

From a philosophical point of view, we have only deter-
mined,Blue's optimal strategy. The Red strategy derived cor-
responding to Blue's optimal strategy is the strategv that
Blue cohtends is:optimal for Red to use. This is the strategy
that Blue will assume that Red will actually employ when Blue
plans his courses of action. However, this is clearly not
Red's oétimal allocation strategy if two different payoff ma-
trices exist. |

"What guarantee is there that analyzing Blue's payoff ma-
trix in the context of a zero-sum game and using tne minimax
criterion will give acceptable results to a decision maker?
Suppose that internal saddle point solutions are obtained
from both players' matrices and further that the two solu-

tions are not identical. Clearly, if both sides use their
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optimal strategies with respect to their own payoff matrix
they may be playing non-optimal strategies with respect to
their opponent's payoff matrix. However, if each side plays
his own minimax strategy then neither can receive a worée pay-
off as far as they are each concerned. Thus, tne minimax
solution of a player's own payoff matrix in our problem pro-
vides Blue and Red with upper and lower estimates, respec-~
tively, of the payoff they will receive in the combined
problem. Each side would play these strategies if they had
no information about their opponent's value of U.

If a player can accurately determine his opponent's pay-
off matrix then he may want to use a different strategy than
the one based on his own payoff matrix. Suppose Blue knows
not only Red’'s payoff matrix but alsc that Red uses the maxi-
min criterion to determine his optimal strategy. The best
course of action for Blue to take after evaluating Red's pay-
off matrix is to play that strategy which minimizes his own
payoff when Red uses his maximin optimal strategy. In this
case Blue's payoff would be at least as large as that for the
minimax solution. Thus, a purpose or need for a continuous
and persistent effort to obtair reliable intelligence of an
enemy's intentions or knowledge of his actions is quite

apparent.
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VI. EXTENSIONS OF THE MODEL AND FURTHER STUDIES

The use of the pseudo-saddle-point solution needs further
justification because the theoretical optimal solutiocn for
intéger-valued strategies to the saddle-point payoff matrix
indicates mixed stratégies are best. The probability density
function associated with the mixed strategies should be in-
vestigated to determine if it is unimodal in the vicinity of
thejsaddle-point and if it has a small variance. It seems
that this might be the case when the payoff function is reas-
on%biy flat in the region of the saddle-point as occurred in
ou£ sample problem. Such a study would indicate the validity
oféthe round-off procedure.

A worthwhile study would be the investigation of the
caée where the Blue atﬁacking units and Red units are not as-
sumed to be homogeneous in effectiveness. For example, Blue'
could be allowed to use destroyers, aircraft, and submarines
simultaneously as attacking units and Red could have several
different types of submarines with different capabilities.

If submarines are used as Blue attacking units, they would
probably be deployed independently of one another in an area
beyond the area of search of the aircraft and destroyers.
Their purpose would be to provide a loose barrier patrol ori-
ented towards the general direction of the expected Red threat.
Whereas our model presupposes the deployment of Red prior to
the convoy transit, the use of a Blue submarine barrier would
require a change in the model to allow for attrition of the
Red threat as it approaches the region of the convoy's
anticipated track.
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The effect of allcwing Blue attacking units to be wvul-
nerable to the Red submarines should be studied. This is
particularly important because ASW carriers are oftem em-.
ployed by Blue. By the very nature of the target a submérine
commanding officer would take delight in the sinking of a
carrier!

An interesting extension would be the study of the effect
of relaxing the assumption that the deployment of the Blue
attacking units as independent units in equal, non-overlapping
areas. One approach might be to reguire coordinated, system-
atic search and attack plans which correspond more to actual
naval operations. The use of systematic plans, which are
ﬁsually based on acceptable assumptions, generally increases
the probability of detection since they utilize current
available data from the environment a2nd other socurces. How-
ever, it is important to note that systematic search plans
will rule out the use of the "formula of random search".

This "formula" gave the mathematical property of convexity
to the payoff function and hence greatly facilitated the op-
timization of this model.

It might be beneficial to point out that time is present
in the model in a limited manner since detection is usually
a function of time. Yet, the model is still static in nature
since the optimal sfrategies are derived for the complete
crossing. A better model would be one that permits several
changes in optimal strategies as the convoy crosses. After
a certain time, possibly measured in number of engagements

with Red units, the model wculd be updated to conform with a
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task-force commander's actions. A dynamic programming
fuzmulation mignt be appropriate for such a model. Thig
model could also ba applied to tha preblam i séveral sequen-

tial convoys.
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VII. SUMMARY AND CONCLUSICN
A game theoretic approach has been applied tu an oceanic
convoy situation in an enemy submarine environment. Provid-
ing tne éapabilities and limitations of both opponents can

be specified, a procedure for determining the optimum alloca-

tion of both forces has been presented. The method is de-

pendent upon the planner's ability to estimate the detection
and kill effectiveness parameters of both opponents. The use
of the minimax criterion, while providing a pessimistic out-
look, does assure an upper bound on the worst that could
happen to either sige.

To the authors' knowledge this is the first stuvdy of an
oceanic convoy crossing which utilizes game theory as an
analytical technique. The results of the study have shown
that a game theoretic approach provides both opponents with
a flexible mﬁdel from which a systemat’'.c solution to the allo-
cation problem can be obtained. More significantly, it re-

guires each player to consider his opponent's possible courses

of action.
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